Tornado Detection & Limitations

David Craft

Weather Forecaster

Overview

- Background
- Doppler Radar Limitations
- Examples
- Other Tornado Detection Capabilities
- Prepare & React Appropriately
- References
- Bottom Line

National Average Lead Times & Probability of Detection

Weather Radar Basics

Weather Radar Basics

Non-Supercell Tornadoes

- Probably more frequent in Western U.S.
- Often unseen or unreported
- Form early in thunderstorm lifecycle
- May form rapidly near surface then extend upward
- May form simultaneously at low and mid levels
- Shallow and/or narrow, brief

Spin-Up Tornado Formation

Cause 1: shear instabilities stretched upward by updraft

Cause 2: horizontal vorticity tilted to vertical by updraft

Doppler Radar Limitations

All Doppler radars have difficulty detecting circulations...

- Too far from radar
 - Beam broadening
 - Overshooting
- Too close to radar
- Blocked from radar view
- Dissipate too quickly

Limitation 1: Too Far From the Radar

Cause 1: Beam Broadening

Limitation 1: Too Far From the Radar

Cause 2: Overshooting

Angles Used

Radar Coverage

Limitation 2: Too Close to the Radar

Cone of Silence

Limitation 3: Blocked From View

Radar Coverage at 10,000 Ft

Limitation 4: Dissipate Too Quickly

- Many spin-ups may last only a few minutes
- Complete atmosphere scan may take 5 or 6 minutes
- Even when detected, spin-ups frequently dissipate before a warning can reach people
- New scan strategies will shrink scans to 4.1 minutes

Example 1: Spin-Up Below Cumulus Cloud

Example 2: Spin-Up Below Thunderstorm

Other Tornado Detection Capabilities

- Storm Prediction Center guidance
- Weather models
- Satellites, profilers, soundings, upper-air data, surface obs
- Storm spotters
- News media, law enforcement and public reports

Prepare & React Appropriately

- FEMA's tornado safety tips brochure: www.fema.gov/hazards/tornadoes/tornadof.shtm
- Watch for small tornadoes with all thunderstorms
- U.S. hazards assessment
- Severe wx outlook, mesoscale discussions, watches
- Hazardous wx outlook & warnings
- Use NOAA weather radios
- Report tornadoes to NWS, if safely possible

Bottom Line

- WSR-88D's do a good job at what they're designed to do: detect strong mid-level circulations
- All weather radars have limitations
- Small tornadoes frequently exploit these limitations in New Mexico
- NWS forecasters use all available resources to overcome tornado detection limitations
- Weatherwise media & public can prepare for this dangerous threat and react appropriately when tornadoes strike

References

- NOAA, 1999: Thunderstorms...tornadoes...lightning...
 nature's most violent storms. A preparedness guide.
 NOAA/PA #99050, ARC 1122, 16 pp. Cited 2004. [Available online at http://www.nws.noaa.gov/om/brochures/ttl.pdf].
- NWS, cited 2003: NWS radar FAQs page. [Available online at http://weather.noaa.gov/radar/radarinfo/radarinfo.html].
- Wakimoto, R.M., and Wilson, J.W., 1988: Non-supercell tornadoes. Mon. Wea. Rev., 117, 1113-1140.
- WSR-88D Operational Support Facility and Titan Systems Group, July 1998: WSR-88D Principal User Processor Operator Handbook. Volume II, Applications Terminal, Software Version 10.0, 267 pp.

Tornado Detection & Limitations

Questions for David Craft?

David.Craft@noaa.gov